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Abstract
Low-resource machine translation is a challenging problem, especially when the source lan-
guage is morphologically complex. We describe a simple procedure for constructing glosses,
or mappings between complex, inflected source-language words and equivalent multi-word
English expressions. We demonstrate the utility of glosses, especially compared to entries in
bilingual dictionaries, across several data-augmentation strategies designed to mitigate a lack
of training data. In our experiments, we achieve improvements of up to 1 BLEU point in a
Russian-English translation task and 2.4 BLEU points in a Spanish-English translation task
over a strong baseline translation system.

1 Introduction

Low-resource machine translation, where only a small amount of parallel data is available be-
tween source and target languages, poses a significant challenge. Machine translation systems,
especially those based on neural network models, tend to be data-hungry. Highly-inflected
source languages further complicate the situation, presenting a significant sparsity problem in
low-resource settings. Most possible inflected wordforms are likely to appear only once in the
data or not at all.

In an effort to improve performance when limited parallel data is available for learning
how to translate from a highly inflected source language into English, we experiment with
two simple data augmentation strategies—appending and substitution. To alleviate sparsity,
we experiment with appending entries from multilingual dictionaries directly to the bitext. We
also leverage linguistic knowledge about the morphological grammar of the highly-inflected
source language to generate multi-word English glosses. We show that these glosses, which
better mimic in-situ translations, are more effective than dictionary entries when appended to
the training data. We also employ glosses for a second strategy, directly substituting them in
place of complex inflected forms in the source language. The overarching idea is to create a
new version of the source, source′, that is more similar to the target language. In theory, this
should improve performance by solving some portion of the translation problem before a final
translation model is trained. We show that gloss substitution has a positive effect on BLEU
scores compared to baseline systems.

We present experimental results translating from Russian and Spanish into English. While
Russian and Spanish are not low-resource languages, we simulate extremely low-resource sce-
narios by relying only on representative language packs from DARPA’s LORELEI (LOw RE-
source Languages for Emergent Incidents) program as our source of parallel training data.



These packs typically contain less than 50,000 bilingual sentence pairs in total, orders of mag-
nitude below the amount used to train most state-of-the-art MT systems. We run our exper-
iments using traditional phrase-based statistical machine translation models (PBMT). While
neural machine translation offers state-of-the-art performance when training data is plentiful,
PBMT remains competitive or superior in the low resource conditions we focus on (Koehn and
Knowles, 2017).

2 Multilingual Dictionaries Versus Glosses

We define an entry in a multilingual dictionary as a mapping between a lemma form in the
source language to one or more definitions in the target language.

бежать,VERB,to run, to be running
While useful, these types of entries have several notable drawbacks when used as bitext

for a translation system. First, on the source side, the dictionary forms of words, or lemmas,
are typically uninflected, and may not be in common usage. For example, the dictionary form
of verbs in many languages is the infinitive, but in actual text tensed forms are much more
common. Second, on the target side, dictionary definitions are not necessarily equivalent to
in-situ translations of a word, and often contain additional descriptive text.

Glosses, as we define them, are intended to remedy these problems. A gloss is a mapping
between an inflected form of a word, and an in-situ translation. In many cases, English uses
syntactic constructions to express distinctions made by inflectional morphology in a source
language. As a result, single source words are often glossed as multi-word expressions in
English.

бегут, бежать,V;IPFV;PRS;3;PL,(they/NNS) are running; (they/NNS) run
Generating a gloss for an inflected word follows a general process outlined in Hewitt et al.

(2016). In this work, however, we simplify many of the steps. Our implementation is fully
described in the Experiments section below.

1. Apply morphological analysis to an input inflected word to recover its base lemma and
morphological features, e.g.,

comprábamos → comprar, V;1;PL;PST;IPFV

2. Using a separate lemma-to-lemma dictionary, recover a target lemma for the source word:

comprar → buy

3. Specify a conversion from each vector of source morphological features to a target gloss
template. For many language pairs, this can be done manually:

V;1;PL;PST;IPFV → ‘(we) were VBG.’

Here, VBG is a Penn Treebank tag1 which indicates that the template can be filled with the
gerund (-ing) form of an English verb.

4. Given a gloss template from (3), and a target lemma from (2), replace the PTB placeholder
in the template, inflecting the target lemma as needed with a morphological generation tool
or lookup table:

‘(we) were VBG’ + buy → ‘(we) were buying’

This completes the gloss generation process:

comprábamos → ‘(we) were buying’
1https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html



3 Related Work

Prior work has both explored ways of generating morphological information, and incorporating
such morphological information into Phrase Based Machine Translation. While there is work
on generating rich morphology on the target side of translations (for example: (Toutanova et al.,
2008; Huck et al., 2017), we focus on rich source side morphology in this work.

Hewitt et al. (2016) created glosses by re-purposing instructional prompts found in a spe-
cial corpus designed to elicit inflectional paradigms from bilingual speakers (Sylak-Glassman
et al., 2016). For example, the sample prompt ‘(The apple) has been eaten.’ was designed to
elicit third person present perfect verb forms from bilingual Spanish speakers. They heuristi-
cally interpolated between multiple prompts to generate new gloss templates for each possible
feature vector and lemma. They experiment with both appending their synthetic translations to
the parallel text as well as using an additional phrase table (and the combination of both), but
did not find that one method was consistently superior.

Broadly, the goal of our substitution approach is to transform the source language into a
form that is more similar to the target. A number of previous strategies used in MT have fallen
under this umbrella. Compound splitting (Koehn and Knight, 2003; Macherey et al., 2011) of,
for example, German source-side words increases similarity with English as English doesn’t
use nearly as many compounds as German. Fraser and Marcu (2005) use stemming to reduce
Romanian source side vocabulary size to improve Romanian-English word alignment. Ding
et al. (2016) compare supervised (ChipMunk (Cotterell et al., 2015)) and unsupervised (Mor-
fessor (Virpioja et al., 2013), and Byte-Pair encoding (Sennrich et al., 2015)) morphological
segmentation methods on the source side of the PBMT system for the WMT Turkish-English
Translation Task.

4 Experiments

4.1 Model

We use Moses (Koehn et al., 2007) as the Phrase Based Machine Translation (PBMT) system
to run all our translation experiments. Data is tokenized and truecased using standard Moses
scripts. We use GIZA++ (Och and Ney, 2003) for alignment with the grow-diag-final-and
setting. We set the maximum sentence length to 80 and the maximum phrase length to 5. For
decoding, we use Cube Pruning (Huang and Chiang, 2007). We also weigh potential translations
using a 5-gram KenLM (Heafield, 2011) language model.

4.2 Data

Bitext. For our base bitext, we use the Russian-English Corpus from the LORELEI Russian
Representative Language Pack (LDC2016E95 V1.1), and the Spanish-English Corpus from
the LORELEI Spanish Representative Language Pack (LDC2016E97). The corpora primarily
consist of news and web forums. While they are included in the LORELEI corpora, we exclude
Tweets from these experiments. We also remove sentences longer than 80 words.

For the Russian baselines, we randomly split the remaining data into train (46,746), tune
(2,233), and test (2,462) sentence pairs. For the Spanish baselines, we randomly split the re-
maining data into train (22,311), tune (2,031), and test (2,032) sentence pairs. See table 1 for
the number of sentences in the training corpus for each experiment condition.2 The tuning and
test sets remain the same for all experiments in a language.

2Since we perform the length filtering on the training set after gloss substitution in the corresponding condition,
some sentences are removed as substitution makes them too long.



Dictionary. The LORELEI language packs from Russian and Spanish also contain dictio-
naries mapping source lemmas into target definitions in a custom XML format. Some entries
include multiple definitions. In this case, each definition was split into its own line of bitext.
Furthermore, some of the definitions include notes on gender (e.g. артистка: artist (female).)
or topic (e.g. бить: chime (about clock) ), or other comments (e.g. бензель: (rare) paintbrush).
We remove any text within parenthesis, and then remove any entries with non-English words.
After all post-processing was complete, we were left with 58,856 dictionary entries for Russian,
and 64,450 dictionary entries for Spanish.

Glosses. Glosses for Russian and Spanish were created as follows: Lists of inflected word-
forms were obtained via a union of the UniMorph database (unimorph.githbub.io),
which provides a mapping from inflected forms to their lemmas and morphological feature
vectors, and a tokenization of the monolingual corpus released by the LDC as part of LORELEI
language packs for Russian and Spanish.

For each word in the list, additional morphological analyses were obtained. For Russian,
we applied the PyMorphy2 package (Korobov, 2015)3 to each word, while for Spanish we used
the Freeling package (Padró and Stanilovsky, 2012).4 For both Russian and Spanish, we also
applied a custom sequence-2-sequence neural network analyzer trained on the raw data in the
UniMorph database. The network used an architecture, training scheme, and hyperparameters
identical to that used in (Kann and Schütze, 2016). It mapped sequences of characters rep-
resenting an inflected word directly to a sequence representing the its underlying lemma and
features (c o m p r á b a m o s → c o m p r a r V 1 PL PST IPFV) The feature vectors output
by all analysis methods were manually mapped into the UniMorph feature schema standard
(Sylak-Glassman et al., 2015). As the total set of of unique feature vectors remaining after this
mapping was limited for both Russian (569 vectors) and Spanish (239 vectors), we were able
to manually produce one or more gloss templates for each vector (e.g., V;1;PL;PST;IPFV →
‘(we) were VBG.’).

Source lemmas in Russian and Spanish were converted to English lemmas via lookup in,
preferably, Wiktionary-derived lemma translation data (Kirov et al., 2016), or PanLex (Bald-
win et al., 2010). English lemmas were then inflected using the tools provided by Smedt and
Daelemans (2012) and inserted into the corresponding gloss templates.

We further post-processed the glosses by removing anything in parenthesis or brackets,
and then removed entries containing non-English words in the translation, after which we were
left with 3,122,470 Russian glosses, and 589,188 Spanish glosses.

5 Conditions
We trained three baseline models and five additional experimental setups. Total sizes of training
datasets for each condition, in number of paired sentences, are shown in Table 1.

For Baseline 1, in both Russian and Spanish, we simply trained a default Moses system
on the base bitext in each LORELEI language pack. The language model and truecaser used
during decoding were trained only on the target-side portion of the parallel training data.

For Baseline 2, we made use of the extensive monolingual data available for English. Fol-
lowing previous work, we trained a new truecaser and a much larger language model from the
English side of the Russian-English parallel text plus text from the Associated Press World-
stream, English Service, a subset of the English Gigaword corpus (Parker et al., 2011) (a total
of 54,287,116 sentences). Given the clear performance benefit, we continued to use this larger
language model for all subsequent experiments. While the large language model was trained

3https://github.com/kmike/pymorphy2
4http://nlp.lsi.upc.edu/freeling



Condition Russian Spanish

Baseline 1 (Small LM) 46,460 22,311
Baseline 2 (Big LM) 46,460 22,311

Append Dictionary 105,316 86,861
Append Glosses 3,168,675 611,439
Append Dictionary + Glosses 3,227,531 675,989
Substitute Glosses 46,414 22,226
Substitute Glosses + Identity Alignment 95,603 40,724

Table 1: Number of train sentences for Russian-English and Spanish-English Translation.

source Женщина была почти при смерти
reference the woman had nearly died

substitution woman were почти при to death

Table 2: An example of gloss substitution in the Russian-English training set.

using the target-side of the Russian-English data, this contributed a minuscule amount in pro-
portion to the contribution of data from the Gigaword corpus. Thus, we use the same language
model for both Russian and Spanish experiments.

For Baseline 3, in both Russian and Spanish, we train PBMT system on the glosses and
dictionary (without any parallel sentences). We use the larger language model from Baseline 2.

Appending. Our next experimental conditions involved appending additional data to the base
bitext for each language. We experimented with appending the processed dictionary entries or
generated glosses, as well as appending both the dictionary and the glosses in one system. Each
of these modifications increased the total size of the training data, as seen in Table 1.

Substitution. Finally, we substituted our glosses directly into the base bitext. Any inflected
source word appearing in the list of glosses was a candidate for substitution. Many words
had multiple glosses available. To decide which one to use for substitution, we considered the
following confidence hierarchy. First, any gloss corresponding to a pre-existing entry in the
UniMorph database was preferred. Next, we preferred entries corresponding to an off-the-shelf
morphological analysis (derived from PyMorphy2 in Russian, and Freeling in Spanish). Glosses
based on the custom-trained neural-network analyzer were used when a UniMorph entry was
not available and both PyMorphy2 and Freeling failed to provide an analysis. An example of
the substitution process is shown in table 2.

While substitution is intended to make the source language appear more like the target
(in this case literally, since target language words are substituted directly into the source), the
alignment algorithm in the PBMT system is not character-aware and therefore has no sense of
identity between the source and target vocabularies. To get around this, we add a condition
attempting to bias the aligner to notice identical source and target phrases. In particular, for
each gloss substitution, we append a gloss-to-gloss identity mapping to the bitext.

6 Results & Discussion

Table 3 indicates the lowercased BLEU scores achieved by the model in each experimental
condition in Russian-English and Spanish-English settings. Results were consistent across both
language pairs. As expected, using a larger target-side language model (Baseline 2) provides
a significant boost over the initial baseline (Baseline 1) with language model trained only on



Condition Russian BLEU %OOV(Type/Token) Spanish BLEU %OOV (Type/Token)

Baseline 1 (bitext + Small LM) 15.6 31.1/11.2 18.6 24.6/8.0
Baseline 2 (bitext + Big LM) 16.2 31.1/11.2 20.6 24.6/8.0
Baseline 3 (dictionary + Glosses + Big LM) 7.7 26.5/26.7 14.6 12.1/13.1

Append Dictionary 17.0 28.7/10.2 21.5 20.2/6.6
Append Glosses 17.8 15.2/5.5 23.8 6.8/2.3
Append Dictionary + Glosses 18.0 15.1/5.5 23.9 6.6/2.3
Substitute Glosses 17.7 26.3/5.0 22.2 19.5/4.0
Substitute Glosses + Identity Alignment 17.8 26.3/5.0 22.9 19.5/4.0

Table 3: Lowercased BLEU for Russian-English and Spanish-English Translation.

the available bitext. This was true even for Spanish, where the large language model was par-
tially trained on the Russian-English target-side data, and was potentially out-of-domain. Every
augmentation strategy provided some further improvement. Baseline 3 demonstrates that sim-
ply using the lexical resources and a strong language model can produce decent results in the
absence of bitext (particularly in the Spanish experiments).

As we hypothesized, appending the glosses to the training data results in better perfor-
mance than just appending dictionary pairs. This is likely because glosses are closer to actual
translations. However, there is an additive effect of appending both dictionary items and glosses,
suggesting that the two external data sources contain at least some complementary information.

The substitution trials did not fare as well as the appending trials. They did, however, still
provide an improvement over Baseline 2. This was even without adding identity pairs to the
training data in order to bias alignment (so the model was not aware which parts of the source
sentences were actually English), or increasing the amount of bitext in any way. This suggests
that using simple techniques like gloss substitution to transform the source into something closer
to the target language makes learning a complex MT model after the fact more effective. In the
Russian gloss substitution, 67% of tokens were replaced in the training set. In Spanish, 80% of
tokens were replaced.

Table 3 includes the out-of-vocabulary rate (type and token) for each experiment. The
low out-of-vocabulary rate for baseline 3 demonstrates the coverage of the the dictionary and
glosses (particularity for Spanish). The glosses in particular have very broad coverage. They
provide a dramatic drop in OOV’s (dropping the rate by over 50%). In addition to the BLEU
improvement, reducing the OOV rate can greatly improve the usability of low resource machine
translation.

7 Conclusions & Future Work
We showed that glosses of morphologically complex source words are a useful resource for
rapidly improving machine translation performance in extremely low-resource scenarios. As
glosses mimic in-situ translations of inflected words, they are more informative than dictionary
items, which map lemmas to definitions. Glosses are useful both for augmenting training data
with additional bitext, or transforming source language data into a form that is more similar to
the target language. Future work will explore different ways of generating glosses, and apply
additional transformations to the language data to ease the amount a translation model needs to
learn. This would include changing both the source language, and making reversible changes
to the target. If a non-English, morphologically complex target is used, these might include
target-side morphological segmentation.
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