INTRODUCTION

e A standard strategy for comparing competing theories of learning
in morpho-phonology is to compare the fit of models that embody
each theory to data.

e This strategy can be used to study the role of bias in learning, com-
paring models with UG bias to domain-general models.

e [t is important to use the strongest available domain-general models
as the baseline for comparison.

e Furthermore, as better domain-general learning mechanisms are dis-
covered, old model comparisons should be re-examined.

ENCODER/DECODER NETWORKS

Decoder

Encoder

S W A M
( —»| = )
( | | | )
S W | M

> t a r ] a m a <w

Older connectionist models such as the classic wicklephone-based
Rumelhart & McClelland (1986) past-tense network had many limi-
tations. Modern recurrent encoder-decoder architectures (Sutskever

et al. 2014) meet Albright & Hayes’s (2002) criteria for a complete
morpho-phonological model:

e Able to generate complete output forms, rather than classity inputs
into categories such as ‘regular’ or ‘irregular.’

e Able to make multiple output guesses, and assign numerical ratings
to each.

e Able to generalize to unseen data.
Additional benefits of encoder-decoder architectures include:

e State-of-the-art performance in string-to-string transduction tasks,
such as morphological (re-inflection).

— ~95% of inflected forms predicted correctly across multiple lan-
guages (including templatic morphology in Arabic and Maltese,

and long-distance harmony patterns in Hungarian and Turkish)
during SIGMORPHON 2016 competition.

e Highly domain-general by default. Input is a series of abstract sym-
bols presented without phonological features. Network must learn
distributed representation for each phoneme.

*All models described in this paper were trained for a maximum 15
epochs using a variant of the LSTM-based architecture in (Aharoni et
al. 2016) with 2-layer decoder and encoder of 100 hidden units each.
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CASE STUDY: ROMANIAN PLURALS

e Romanian has four plural suffixes: (-i -e -uri -ale). Predicting which
suffix pluralizes a given neuter or feminine stem is difficult.

e Previous best performance achieved by hand-tuned Conditional
Maximum Entropy Grammar from Grosu & Wilson (2016):

p(suffix|stem) oc exp(— Z we(suffix, stem))
c,weC

e Network directly predicts plural form given singular input: (f: fata
— fete ), (n: scaun — scaune )

Given random %80/%20 train/test split of the 39,500 singular/plural
pairs collected by Grosu & Wilson:

Romanian | Network MaxEnt
Feminine 95.8% 92.2%
Neuters 86.2% 80.3%

CASE STUDY: ENGLISH PAST

e Humans can generalize sub-regularities in irregular past tense forms
(swim/swam /swum ~ spring/sprang/sprung)

e Albright & Hayes (2002) trained their Minimal Generalization
Learner to predict past forms of 4253 CELEX stems.

e They used the model to predict human human production probabil-
ities of past tense forms given ‘wug’ present stems.

Network trained on the same CELEX data correlates with human pro-

duction probabilities better than MGL:
English Network MGL

Regular (rife ~ rifed, n=>58) 735 619
Irregular (rife ~ rofe, n="74) 711 143

CASE STUDY: TURKISH LARYNGEALS

e Some Turkish noun stems undergo a laryngeal alternation when a
vowel-initial suffix is added (ret ~ reddim).

e Becker et al. (2011) claim UG learning bias against using stem vowel
cues to predict alternation.

— Fit logistic regression models to a lexicon of 3,002 nominal stems.

— Models without vowel factors perform better at predicting human
forced-choice performance on 72 ‘wug’ nominal stems.

But, a network trained on the same lexicon performs as well the UG-
biased regression model on wugs:

Model ey

place*size (regression without vowel cues) .360
place™size + place*high + place*back (unbiased regression) | .349
network (unbiased) .368

RECURRENT NEURAL NETWORKSASA STRONG DOMAIN-GENERAL BASELINE N
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CONCLUSIONS AND OUTSTANDING ISSUES

Modern recurrent neural networks provide a strong domain-general
morpho-phonological learning baseline. This makes them a promis-
ing tool for studying the role cognitive and linguistic biases play in
learning:

e Are there attested patterns that networks have a hard time learning
(e.g., as shown by slower convergence during training)?

— Of particular interest here would be reduplication and metathe-
sis, behaviors that can’t be easily represented by simple finite-
state transducers without extensive restrictions.

— If such patterns exist, is it possible to bias the network to make
learning easier (e.g., by initializing weights at a specific starting
point).

e Similarly, are there unattested or diflicult patterns, as found either
by typological surveys or artificial grammar learning experiments,
that networks learn too easily?

— If so, what kind of bias or regularization can be built into the
networks to limit learnability?

e What representations and mechanisms do networks actually learn?

— Do hidden units show large changes in activation when par-
ticularly informative input symbols are reached (Kirov et al.
2011; Kadar et al. 2016)? If so, network analysis can help us
understand and describe phonological patterns by highlighting
important parts of the input that we had not considered to be
relevant cues.

— (Can learned representations be transformed into feature vectors
comprised of traditional linguistic features (e.g., +/- vocalic,

+ /- labial)?
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