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Grammatical Influences
• Speech planning is known to be affected by competition. Choos-

ing between multiple similar options results in longer latencies and
hyper-articulated (carefully pronounced) speech [1].

• But, language-specific knowledge and biases (grammar) also affect
the production of both known and novel utterances.

– Phonotactic knowledge affects the speed and accuracy of word-
form repetition for both real and nonce words [2].

• Most production models do not take the latter into account.
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• Most production models involve communication between multiple
levels of processing.

• Bayesian model assumed here [1] treats communications as evidence
to update a probability distribution over what forms to produce.
Updates repeat until some form reaches threshold probability.

p(r|E) =
p(E|r)p(r)

Z

posterior =
likelihood ∗ prior

normalizing constant

• Prior encodes which representations are possible or expected —
allows inclusion of task-specific knowledge (including grammar),
and traces of previous productions.

• At phonological levels, need to structure prior so that:

– It can assign probabilities to arbitrary strings to allow for pro-
duction of novel utterances.

– It can incorporate grammatical knowledge.

Factor Graphs
• Denote a string s as x1x2x3...xn, where x1 is the phone at position

1 in the string, and so on.
• P (s) is a joint distribution over several random variables, X1 to Xn,

one for each position in the string
• Represent distribution as a product of factors.

P (s) =
1

Z

∏
i

fi(χi(s))

• Graphs connect variable nodes (circles) with factor nodes (squares).
• Unitary factors represent likelihood of a certain variable value. Some

(blue) can represent evidence aggregated over time.
• N-ary factors represent co-occurrence constraints.
• There are efficient inference algorithms for values of interest such as

the most probable arrangement of variable states (e.g., phonemes).
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Harmonic Grammars as Graphs
• Harmonic grammars are a similar formalism to Optimality Theory.
• Harmonic grammars represent the goodness or a form by its har-

mony.
• Harmony is calculated as the sum of weighted constraint violations,

where each constraint applies e.g., to a subset of positions in a
phonological string.

h(x1x2...xn) =
∑
i

wiCi

• By taking the exponent of the harmony, we get a proportional Max-
Ent score [3]:

eh(x1x2...xn) = e
∑

i wiCi

• Thanks to the properties of exponentiation, we can represent this as
a product of factors, which is all we need to generate a factor graph!:

e
∑

i wiC(i) = ew1C1ew2C2 ...ewNCN = f1f2...fN

Berber Syllabification
Base harmonic grammar [4] based on Dell and Elmedlaoui [5]. Vari-
ables have two possible states, nucleus and non-nucleus:

S1 S2 S3

Unitary factors (blue):

• e0 for non-nucleus state
• e2s−1 for nucleus state, where s is the sonority of the most likely

segment in position one.

Binary Factors:

• e0 for when the two adjacent positions are not both nuclei
• e−28 when the two adjacent positions are both nuclei

Phonotactics
• Learn phonotactic factors based on three-segment words in the

Hoosier Mental Lexicon.
• CVC words greatly outnumber all other structures such CCV (1338

to 275).
• In simulations, words with optimal phonotactics (i.e., CVCs) were

produced in an average of 68.5 time steps. Words with other struc-
tures were produced in an average of 76.35 time steps.

Future Directions
• Moving beyond proof-of-concept simulations to test predictions of

more detailed grammars - e.g., the full-scale phonotactic grammars
induced by the Hayes/Wilson MaxEnt Learner [3].

• Thinking about plausibility as a neural mechanism:

– Inference at each simulated time step is currently treated as
instantaneous - should it have a temporal dimension? Do ab-
stract grammatical processes such as allophonic variation have
one?

– Some neurons appear to perform probabilistic calculations, in-
cluding normalization [6].
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