(GRAMMATICAL INFLUENCES

e Speech planning is known to be affected by competition. Choos-
ing between multiple similar options results in longer latencies and
hyper-articulated (carefully pronounced) speech [1].

e But, language-specific knowledge and biases (grammar) also affect
the production of both known and novel utterances.

— Phonotactic knowledge affects the speed and accuracy of word-
form repetition for both real and nonce words |2|.

e Most production models do not take the latter into account.

BAYESIAN PRODUCTION FRAMEWORK
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e Most production models involve communication between multiple
levels of processing.

e Bayesian model assumed here 1| treats communications as evidence
to update a probability distribution over what forms to produce.
Updates repeat until some form reaches threshold probability:.

p(E|r)p(r)
A

p(r|E) =

likelihood * prior

posterior = —
normalizing constant

e Prior encodes which representations are possible or expected —
allows inclusion of task-specific knowledge (including grammar),
and traces of previous productions.

e At phonological levels, need to structure prior so that:

— It can assign probabilities to arbitrary strings to allow for pro-
duction of novel utterances.

— It can incorporate grammatical knowledge.
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FACTOR GRAPHS

e Denote a string s as x1xsx3...x,, Where x1 1s the phone at position
1 in the string, and so on.

e P(s)is a joint distribution over several random variables, X7 to X,
one for each position in the string

e Represent distribution as a product of factors.
1
P(s) = - [ ] filxi(s))

e Graphs connect variable nodes (circles) with factor nodes (squares).

e Unitary factors represent likelihood of a certain variable value. Some
(blue) can represent evidence aggregated over time.

e N-ary factors represent co-occurrence constraints.

e There are efficient inference algorithms for values of interest such as
the most probable arrangement of variable states (e.g., phonemes).

HARMONIC GRAMMARS AS GRAPHS

e Harmonic grammars are a similar formalism to Optimality Theory.

e Harmonic grammars represent the goodness or a form by its har-
mony.

e Harmony is calculated as the sum of weighted constraint violations,
where each constraint applies e.g., to a subset of positions in a
phonological string.

h(xi1x2...0,) = Z w; C;

e By taking the exponent of the harmony, we get a proportional Max-

Ent score |3|:
[ ] eh(:clzcz...a:n) _ Gzi wh O

e Thanks to the properties of exponentiation, we can represent this as
a product of factors, which is all we need to generate a factor graph!:
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BERBER SYLLABIFICATION

Base harmonic grammar [4] based on Dell and Elmedlaoui [5|. Vari-
ables have two possible states, nucleus and non-nucleus:

bodod

e ¢V for non-nucleus state

o ¢2 ~1 for nucleus state, where s is the sonority of the most likely

segment 1n position one.

Unitary factors (blue):

Binary Factors:

e ¢ for when the two adjacent positions are not both nuclei
e ¢~ 2 when the two adjacent positions are both nuclei

PHONOTACTICS

e Learn phonotactic factors based on three-segment words in the
Hoosier Mental Lexicon.

e CVC words greatly outnumber all other structures such CCV (1338
to 275).

e In simulations, words with optimal phonotactics (i.e., CVCs) were
produced in an average of 68.5 time steps. Words with other struc-
tures were produced in an average of 76.35 time steps.

FUTURE DIRECTIONS

e Moving beyond proof-of-concept simulations to test predictions of
more detailed grammars - e.g., the full-scale phonotactic grammars
induced by the Hayes/Wilson MaxEnt Learner [3].

e Thinking about plausibility as a neural mechanism:

— Inference at each simulated time step is currently treated as
instantaneous - should it have a temporal dimension” Do ab-
stract grammatical processes such as allophonic variation have
one?

— Some neurons appear to perform probabilistic calculations, in-
cluding normalization [6].
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